Evidence for an alternative glycolytic pathway in rapidly proliferating cells.
نویسندگان
چکیده
Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.
منابع مشابه
Supporting Online Material for Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells
متن کامل
Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression.
To sustain increased growth, rapidly proliferating cells, such as tumour cells, undergo metabolic adaptations. In recent years, the mechanisms of glycolysis activation as a key metabolic adaptation in proliferating cells became the topic of intense research. Although this phenomenon was described more than 50 years ago by Otto Warburg, the molecular mechanisms remained elusive. Only recently, i...
متن کاملThe sweet trap in tumors: aerobic glycolysis and potential targets for therapy
Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a hi...
متن کاملتأثیر استرس اکسیداتیو حاصل از مصرف سیگار بر فعالیت آنزیمهای گلیکولیزی هگزوکیناز و پیروات کیناز در اریتروسیتهای افراد سیگاری
Background & Aim: Hexokinase and pyruvate kinase are two regulatory enzymes of glycolytic pathway in erythrocytes. Increasing evidence suggests that cigarette smoking which produces free radicals and oxidative stress can cause damage to body macromolecules such as proteins and enzymes. The aim of the present study was to investigate the susceptibility of key enzymes of erythrocytes glycolyt...
متن کاملEvidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma bru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 329 5998 شماره
صفحات -
تاریخ انتشار 2010